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Abstract. We have studied three varieties of multivariable functions. Paths

are continuous functions defined on an interval, and taking values in higher

dimensional space. Scalar fields are functions which take multiple variables,
but output a single real number at each point. Vector fields are functions

which map vectors to vectors.

We have discussed various aspects of what it means to be differentiable
in higher dimensions, but Thomas’ otherwise excellent book never formally

defines derivatives for vector fields. We remedy that here.

1. Topological Ideas in Higher Dimensions

In order to precisely and conveniently define limits in higher dimensions, we first
give names to some concepts regarding open sets.

Definition 1. Let p ∈ Rn. The ball of radius ε around p is

Bε(p) = {x ∈ Rn | |x− p| < ε},
where |x− p| is the distance between x and p.

Let D ⊂ Rn and let x ∈ Rn.
We say that x is an interior point of D if there exists ε > 0 such that

Bε(x) ⊂ D.
An interior point of D is necessarily in D.

We say that x is a boundary point of D if for every ε > 0, Bε(x) contains points
that are in D as well as points that are not in D.

Definition 2. Let U ⊂ Rn.
We say that U is open if every point in U is an interior point of U .
Let p ∈ Rn. A neighborhood of p is a set which contains an open set which

contains p. A deleted neighborhood of p is a set of the form U r {p}, where U is a
neighborhood of p.
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2. Limits and Continuity for Vector Fields

Let A and B be sets. The notation f : A→ B means that f is a function from
A into B. The notation f : D ⊂ A→ B means that D ⊂ A and f : D → B.

Let ~F : D ⊂ Rn → Rm. We would like to define what it means for ~F to be
differentiable at a point ~p0 ∈ Rn. Since this involves limits, and limits require open
sets, we begin there.

Definition 3. Let ~F be defined on a deleted neighborhood U of ~p0 in Rn.

We say that the limit of ~F as ~p approaches ~p0 equals ~q ∈ Rn if, for every ε > 0,

there exists δ > 0 such that 0 < |~p− ~p0| < δ implies |~F (~p)− ~q| < ε.
If such an ~q exists, we write

lim
~p→~p0

~F (~p) = ~q.

Definition 4. Let ~F be defined on a neighborhood U of ~p0 in Rn.

We say that ~F is continuous at ~p0 if, for every ε > 0, there exists δ > 0 such

that |~p− ~p0| < δ implies |~F (~p)− ~F (~p0)| < ε.

Note that by setting m = n = 1 above, we have the standard definitions of these
concepts from single variable Calculus.

3. Differentiability in Single Variable Calculus

Recall the definition of differentiability for functions f : R→ R.

Definition 5. Let f : I → R, where I ⊂ R is an interval. Let x0 ∈ I be an interior
point. We say that f is differentiable at x0 if the limit

lim
x→x0

f(x)− f(x0)

x− x0
exists. Such a limit is called the derivative of f at x0, and is denoted f ′(x0).

Note that by setting h = x− x0, the derivative may be written

f ′(x0) =
f(x0 + h)− f(x0)

h
.

We can create a function from this by letting x0 vary; to suggest this in the notation,
we replace x0 with x to get

f ′(x) =
f(x+ h)− f(x)

h
.
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4. Differentiability of Paths

Definition 6. A path in Rm is a continuous function ~r : I → Rm, where I ⊂ R is
an interval. A curve in Rm is the image of a path.

Let ~r : I → Rm be a path, and let t0 ∈ I be an interior point. We say that ~r is
differentiable at ~r if

lim
t→t0

~r(t)− ~r(t0)

t− t0
exists. Such a limit is called the derivative of ~r at t0, and is denoted ~r′(t0).

Letting t0 vary, we replace t− t0 with h, then replace t0 with t, to obtain

~r′(t) = lim
h→0

~r(t+ h)− ~r(t)
h

We often view a path as a particle in motion; we normally use the variable t to
denote the domain, because we are visualizing t to represent time. The derivative
of a path at a point is a vector, and is called the velocity vector of ~r at time t. Let
~v(t) = ~r′(t). We know that

• ~v(t) is tangent to the curve at the point ~r(t);
• ~v(t) points in the direction of motion;
• |~v(t)| is the speed of the particle.

If ~r : I → Rm is a path in Rm, then there exist functions r1, . . . , rm : I → R
such that

~r(t) = 〈r1(t), r2(t), . . . , rm(t)〉.
We call r1, . . . , rm the coordinate functions of ~r. We have seen that, in order to
compute the derivative, we simply compute the vector of coordinate functions:

~r′(t) = 〈r′1(t), r′2(t), . . . , r′m(t)〉.
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5. Differentiability of Scalar Fields

Definition 7. A scalar field is a continuous function f : D ⊂ Rn → R.

We have discussed these for n = 2 and n = 3, using coordinate systems (x, y)
and (x, y, z). In order to take this into arbitrarily higher dimensions, we need to
reassign our notation. Thus let x1, . . . , xm denote the distance from the origin
along the coordinates axes in Rn; we use these as coordinate variables, and say our
coordinate system is ~x = (x1, x2, . . . , xn).

Definition 8. Let f : D ⊂ Rn → R be a scalar field, and let ~x = 〈x1, x2, . . . , xn〉 ∈
D be an interior point. The partial derivative of f at ~x in the direction xi is

∂f

∂xi
= lim
h→0

f(x1, . . . , xi + h, . . . , xn)− f(x1, . . . , xn)

h
,

where xi + h is in the ith slot.

The partial derivative is the rate of change of f in the direction of the xi axis.
To visualize it, fix all variables except xi, to create a function fi : Di → R given by
fi(x) = f(x1, . . . , x, . . . , xn), and Di = {x ∈ R | (x1, . . . , x, . . . , xn) ∈ D}, where x
is in the ith slot. Then in the graph of fi, the partial derivative is the slope of the
tangent line at the appropriate point.

Definition 9. Let f : D ⊂ Rn → R be a scalar field, and let ~x = 〈x1, x2, . . . , xn〉 ∈
D be an interior point. Let ~v ∈ Rn. The directional derivative of f is the direction
~v at the point ~x is

D~v(~x) = lim
h→0

f(~x+ h~u)− f(~x)

h
,

where ~u =
~v

|~v|
is a unit vector in the direction of ~v.

The directional derivative is the rate of change of f in the direction of ~v.

Definition 10. Let f : D ⊂ Rn → R be a scalar field.
The gradient of f is the function

Of : D → Rn given by Of =

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
.

Since each of the components of the gradient,
∂f

∂xi
, is a function defined on the

interior of the domain of f , the vector of these components is actually a vector field.
Let ~x = 〈x1, x2, . . . , xn〉 ∈ D. Then gradient of f at ~x is

Of(~x) =

〈
∂f

∂x1
(~x), . . . ,

∂f

∂xn
(~x)

〉
,

which is a vector whose dimension is that of the domain of f .
If we plug the gradient into the directional derivative, we maximize it. Thus

the gradient vector lives in the domain, and points in the direction of maximum
increase of f .
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6. Geometric Interpretation of Derivatives

Differentiation is the process of estimating a function with a linear function; a
function is differentiable if it is approximately linear.

In single variable calculus, we called a function linear if it was of the form

L(x) = mx+ b.

Then, given a function f which is differentiable at x0, we claim that f is approxi-
mated by its “linearization”,

L(x) = f ′(x0)(x− x0) + f(x0).

In this section, we wish to focus on linearity in the sense of linear algebra, as follows.

Definition 11. Let T : Rn → Rm. We say that T is linear if

(T1) T (~v1 + ~v2) = T (~v1) + T (~v2), for all ~v1, ~v2 ∈ Rn;
(T2) T (a~v) = aT (~v), for all ~v ∈ Rn and all a ∈ R.

It can be shown that a linear function maps the origin to the origin. This leads
to the first and most important change in point of view between differentiation in
one dimension and in higher dimensions.

In the case that f : I ⊂ R→ R, we saw the derivative as the slope of the tangent
line. Instead, let us translate the point (x0, y0), where y0 = f(x0), to the origin,
and consider how the function f(x+x0)− y0 approximates a linear function at the
origin.

Let T : R → R be linear, and let T (1) = m. Then for any x ∈ R, (T2) implies
T (x) = T (x · 1) = xT (1) = xm = mx. That is, T is simply multiplication by
T (1). So to say that f is approximately linear means that it is approximated by
a function which multiplies everything by the same number. The single variable
definition we used was

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
.

By properties of limits, this is the same as

lim
h→0

f(x+ h)− f(x)− hf ′(x)

h
= 0.

If we set m = f ′(x0) and T (x) = mx, then T (h) = mh = hf ′(x), so the above is
equivalent to

lim
h→0

f(x+ h)− f(x)− T (h)

h
= 0.
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7. Differentiability of Vector Fields

Definition 12. Let ~F : D ⊂ Rn → Rm. Let ~p0 be an interior point of D. We say

that ~F is differentiable at ~p0 if there exists a linear transformation T : Rn → Rm
such that

lim
~h→0

|~F (~p0 + ~h)− ~F (~p0)− T (~h)|
|~h|

= 0.

If such a T exists, it is unique, and is called the derivative of ~F at ~p0.

Let ~p0 be a point in Rn. In order to visualize a linear transformation which
behaves “locally” near ~p0, we consider the “tangent space” of Rn at ~p0. This is the
set all vectors in Rn, translated so that their tails are situated at ~p0; then if ~p0 is

an interior point in the domain of a differentiable vector field ~F and ~q0 = ~F (~p0),
we view T as a linear transformation from the tangent space at ~p0 to the tangent
space at ~q0.

There are several ways to formally define the notion of tangent space, the most
useful for us being the following.

Definition 13. Let ~p0 ∈ Rn. Consider the set of all paths in Rn which are dif-
ferentiable at ~p0. We say that two of these paths are equivalent if their velocity
vectors are equal at ~p0.

A tangent vector to ~p0 is an equivalence class of paths. The tangent space at ~p0
is the set of tangent vectors. This is identified with a copy of Rn.

Each path ~r through ~p0 is mapped by ~F to a path through ~q0 = ~F (~p0), via

composition. Say that ~r(t0) = ~p0. Then (~F ◦ ~r)(t0) = ~q0 is a path through ~q0, and

we view T as mapping ~r′(t0) to (~F ◦~r)′(t0). If two paths are equivalent, this process
will map them to equivalent tangent vectors in the range.

From this perspective, it is possible to compute the matrix of T . The jth standard
basis vector for the tangent space of ~p0 = (p1, . . . , pn) are represented by path of
the form

~rj(t) = 〈p1, . . . , pj + t, . . . , pn〉 = ~p+ t~ej .

The corresponding tangent vector is ~r′(t) = ~ej . Let ~F = 〈F1, . . . , Fm〉, where

Fi : Rn → R is the ith component function of ~F . Recall that if g : Rn → R, then
the derivative of the composition is given by the chain rule:

d

dt
(g ◦ ~r) =

n∑
j=1

∂g

∂xj

dxj
dt

,

where ~r(t) = 〈x1(t), . . . , xn(t)〉. Applied to our case,

d

dt
(Fi ◦ ~rj) =

∂Fi
∂xj

dxj
dt

,

since the rest of the summands in the chain rule are zero. Thus

~ej 7→
〈
∂F1

∂xj
,
∂F2

∂xj
, . . . ,

∂Fm
∂xj

〉
.
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We put these vectors into the columns of a matrix to see that the matrix of T is

AT =



∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn

...
...

. . .
...

∂Fm

∂x1

∂Fm

∂x2
· · · ∂Fm

∂xn


Example 1. Let ~F : R2 → R2 by given by ~F (x, y) = x2 − y2, 2xy. Find the

derivative of ~F , and use it to estimate the level of area distortion caused by ~F at

the point (1, 2). Also, estimate ~F (1.23, 2.34).

Solution. The derivative is the transformation given by the matrix of partials, eval-
uated at the point (1, 2), which is

A =

∂F1

∂x

∂F1

∂y

∂F2

∂x

∂F2

∂y

 ∣∣∣∣
(1,2)

=

[
2x −2y
2y 2x

] ∣∣∣∣
(1,2)

=

[
2 −4
4 2

]
.

The area distortion is detA = 4 + 8 = 12. Locally, ~F multiplies area by the factor
of approximately 12 near the point (1, 2).

Note that ~F (1, 2) = (−3, 4). Now consider the small vector ~h = 〈0.23, 0.34〉,
residing in the tangent space at (1, 2). Then A~h = 〈2(0.23) − 4(0.34), 4(0.23) +
2(0.34)〉 = 〈−0.9, 1.6〉 is a tangent vector at (−3, 4), which indicates how far from

(−3, 4) is ~F (1, 2). That is,

~F (1.23, 2.34) ≈ ~F (1, 2) +A~h = (−3, 4) + 〈−0.9, 1.6〉 = (−3.9, 5.6).

�
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8. The Derivative is a Linear Transformation

Let us rederive the Jacobian matrix from the perspective of an arbitrary tangent
vector.

Let F : D ⊂ Rn → Rm. Then F = 〈F1, F2, . . . , Fm〉, where Fj : D → R is the
jth component function of F .

Let ~p ∈ D be an interior point. Let ~q = F (~p). Let α : R→ Rn for a path in Rn
with α(t0) = ~p; the equivalence class of α is a tangent vector at ~p. The derivative
of F maps α′(t0) to a tangent vector at ~q given as (F ◦ α)′(t0).

Let x1, . . . , xn be variables for Rn. Now

α′ =
d

dt
α =

〈
dx1
dt

, . . . ,
dxn
dt

〉
,

and

(F ◦ α)′ =

〈
d

dt
F1 ◦ α, . . . ,

d

dt
Fn ◦ α

〉
.

From the change rule,

d

dt
Fi ◦ α =

∂Fi

∂x1

x1
dt

+ · · ·+
∂Fi

∂xn

xn
dt

= OFi · α′,

so we obtain
(F ◦ α)′ = 〈OF1 · α′, . . . ,OFm · α′〉.

Thus we have a well-defined mapping T from the tangent space at ~p to the tangent
space at ~q, which may be rewritten as a matrix product:

T (α′) =



∂F1

∂x1

∂F1

∂x2
· · · ∂F1

∂xn

∂F2

∂x1

∂F2

∂x2
· · · ∂F2

∂xn

...
...

. . .
...

∂Fm

∂x1

∂Fm

∂x2
· · · ∂Fm

∂xn


[
α′] =


OF1

OF2

...
OFm

 [α′] .
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